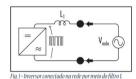
FotoVolt - Maio-Junho - 2018

Conexão de inversor fotovoltaico monofásico à rede

Arthur. C. Souza, José Rubens Macedo Jr., Daniel Tobias S. Borges, Fernando Cardoso Melo, e Luiz Carlos G. Freitas Universidade Federal de Uberlândia – Faculdade de Engenharia Elétrica

via filtro LCL


Para atender às exigências das operadoras do sistema de distribuição, projetou-se a conexão de um sistema fotovoltaico à rede por meio de filtro LCL, o qual, no entanto, demanda estratégias para manter a estabilidade no ponto de acoplamento. Aqui se analisam duas delas: compensadores harmónicos no controle da malha de corrente do inversor, e amortecimento passivo, com um resistor em série com o capacitor do filtro.

Para que o inversor fotovoltaico opere conectado à rede de distribuição, é necessário um elemento de acoplamento. Um único indutor (Filtro L) na saída do inversor é capaz de realizar essa ligação, conforme ilustra a figura 1, porém o filtro L não consegue atender satisfatoriamente a requisitos de conformidade nos casos em que a rede apresenta características de desequilíbrios

e correntes harmônicas, caso em que a tensão no ponto de acoplamento torna-se bastante distorcida [1].

O filtro LCL, ilustrado na figura 2, proporciona uma melhor atenuação harmônica sem aumentar significativamente o consumo de potência reativa, o que permite um tamanho menor de filtro e a não degradação do fator de potência. A grande desvantagem do filtro LCL é sua impedância, que é caracterizada por um pico de ressonância próximo da frequência de corte do filtro, a qual deve ser amorte-

rig. The sort concession in reac por melo ato part of a

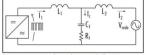


Fig.2-Inversor conectado na rede por meio do filtro LCL

cida para evitar instabilidade [2]. Para amortecer a ressonância, técnicas passivas e ativas podem ser utilizadas

O controle do inversor é dividido em duas malhas de controle: a malha de tensão e a malha de corrente, conforme ilustra a figura 3. A corrente I_c, refere-se à potência de entrada do conversor *boost* dividido pela tensão rms da rede, e, em seguida, multiplicado por um ganho de 1,4142.

O controle da tensão do barramento CC, por sua vez, fica a cargo da malha de tensão do inversor com compensador proporcional integral (PI), o qual define a referência de corrente a ser injetada na rede elétrica. Como a função da malha de tensão é regular a tensão do barramento CC, sua dinâmica deve ser muito mais lenta que a da malha de corrente, de modo a garantir o desacoplamento dinâmico entre ambas e

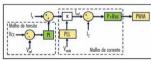


Fig. 3 - Diagrama de bloco do controle do inversor

consequentemente, a estabilidade do sistema [3]. A função de transferência da planta da malha da tensão para o levantamento do compensador PI é dada por (1) [3]:

$$F_{t(PI)} = \frac{R_o}{1 + s \cdot C_o \cdot R_o}$$
(1)

em que

 $R_{_{o}}$ é a resistência equivalente do inversor; e

 C_o é a capacitância de saída do conversor *boost*.

A tabela I e a figura 4 exibem os parâmetros utilizados do conversor boost. Nelas, F_{ss} é a frequência de chaveamento, e η e P_{o} são o rendimento e a potência de saída do conversor,

ab. I — Parametrização do conversor <i>boost</i>						
Parâmetros	Valor					
Vi	216,6 V					
Vo	500 V					
L	855 µH					
Со	700 μF					
Ro	86,44 Ω					
ηboost	93%					
Po	2892,3 W					
Fsw	20 kHz					

Fig. 4 - Circuito equivalente do conversor boost

respectivamente. Mais informação a respeito dos equacionamentos da parametrização do conversor *boost* consta da referência [4].

A figura 5 esquematiza um arranjo típico empregado na geração fotovoltaica, detalhando cada etapa do sistema.

Fig. 5 - Diagrama de blocos da geração fotovoltaica

Com a função de transferência da malha de tensão obtida em (1), juntamente com o auxílio da ferramenta Sisotool do software Matlab, obtém-se o seguinte compensador PI:

$$C_V = 0.09041 \cdot \left(\frac{s + 93.2}{s}\right)$$
 (2)

Vale ressaltar que no projeto do compensador PI foi admitida uma frequência de corte de 150,79 rad/s, visto que este parâmetro deve ser baixo para garantir o desacoplamento com o controle da malha de corrente, ao passo que a margem de fase foi estabelecida em 65°, devido a que sua resposta a um degrau unitário estabilizou-se em curto intervalo de tempo. Um maior detalhamento do projeto do compensador PI é dado na referência [5].

Pela análise da figura 3, verifica-se que o controle da malha de corrente não trabalha com os compensadores tradicionais (PI ou PID), mas sim com o compensador P+Res (Proporcional-Ressonante). Isto porque os compensadores tradicionais não são capazes de seguir uma referência senoidal sem erro em regime permanente, ou seja, o ganho tende a infinito apenas para sinais contínuos (que é o caso da malha de tensão). Além disso, tais controladores possuem baixa capacidade de rejeição de distúrbio devido ao baixo desempenho da ação integral quando a perturbação é um sinal periódico [6]. Portanto, para controlar a corrente em inversores conectados à rede eficientemente, é necessário um compensador que forneça um ganho para o sinal de referência (I_{nd}) onde a forma de onda é periódica senoidal.

Os controladores do tipo P+Res, utilizados na malha de corrente para controle de inversores do tipo fonte de tensão, são tipicamente filtros passafaixa, cuja frequência está sintonizada na frequência nominal da rede elétrica (60 Hz) e que têm como principal característica um alto ganho nessa frequência, devido à soma da ação proporcional com uma ação ressonante.

Vale ressaltar que a malha de corrente controla a injeção de potência à

FotoVolt - Maio-Junho - 2018

FOTOVOLTAICOS

Fabricação de parafusos, porças e arruelas para o segmento de Energia Solar.

ACABAMENTO COM PROTEÇÃO ACIMA DE 1.000 HRS CONTRA CORROSÃO (ORGANOMETÁLICO).

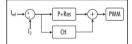
(11) 4092-7714 (11) 97135-3946 comercial@mtctools.com.br www.mtctools.com.br

rede elétrica por meio da referência de corrente imposta pela malha de tensão. A função de transferência do controlador P+Res é apresentada em (3) [7].

$$F_{t(P+res)} = K_p + \frac{2 \cdot K_i \cdot s}{s^2 + \omega^2}$$
(3)

K, = ganho proporcional; K = ganho Integral; e

ω = frequência de ressonância a ser trabalhada


A equação (3) corresponde ao controlador P+Res ideal, o qual produz um ganho infinito em ω, porém não é suficiente para manter a estabilidade do sistema. Portanto, é necessário a implementação do P+Res amortecido [8, 9], conforme abaixo.

$$F_{t(P+res) \text{ amort.}} = K_p + \frac{2 \cdot K_i \cdot \omega_c \cdot s}{s^2 + 2 \cdot \omega_c \cdot s + \omega^2}$$
(4)

em que ω, é a frequência de corte. A adição deste parâmetro resulta em uma pequena ampliação da faixa passante e na redução do ganho na frequência de ressonância, tornando-o estabilizável.

Os compensadores P+Res foram bastante difundidos para o controle da malha de corrente do inversor. Porém, para a compensação de correntes harmônicas, é fundamental a aplicação de compensadores harmônicos (CH) no controle da malha de corrente. Basicamente, devem-se adicionar, em paralelo com o compensador P+Res, outros compensadores iguais sintonizados nas frequências que irão ser compensadas. A adição de novos CHs teoricamente não afeta a dinâmica do compensador P+Res da fundamental [9]. Ressalve-se que pequenos desvios na frequência da rede comprometem a atuação do P+Res, aumentando o erro em regime permanente e diminuindo o desempenho em relação à rejeição harmônica.

O diagrama da aplicação do compensador harmônico juntamente com

Fia. 6 - Implementação do CH no controle da malha de

o compensador P+Res é mostrado na

A equação (5) descreve a função transferência do compensador harmônico.

$$F_{t(CH)} = \sum_{n=3}^{h=7} \left(\frac{2 \cdot K_i \cdot n \cdot \omega_c \cdot s}{s^2 + 2 \cdot n \cdot \omega_c \cdot s + \omega^2} \right)$$
 (5)

Também observa-se que h indica a quantidade de harmônicas que estão sendo compensadas, tal que se h = 7, significa que foram compensadas a terceira, quinta e sétima ordens harmônicas [9].

Regulamentação

A Resolução Normativa REN nº 687/2015 da Aneel - Agência Nacional de Energia Elétrica, atualizou a REN nº 482/2012, esclarecendo os deveres do consumidor quando da conexão de uma geração distribuída (GD) à rede de distribuição, determinando ainda que, após a conexão, o mesmo deve estar em consonância com os limites estabelecidos no Módulo 8 "Qualidade da Energia Elétrica" do Prodist -Procedimentos de Distribuição.

A Norma de Distribuição ND.5.30, que estabelece requisitos para conexão de acessantes ao sistema de distribuição da Cemig - Cia. Energética de Minas Gerais, exige que a energia fornecida pelos sistemas de geração distribuída às cargas locais e à rede elétrica atenda normas de qualidade referentes à tensão, cintilação, frequência, distorção harmônica e fator de potência. O desvio em relação aos padrões estabelecidos caracteriza condição anormal de operação, e os sistemas devem ser capazes de identificar esse desvio e cessar o fornecimento de energia à rede da distribuidora [11]. Para este estudo, destaca-se a avaliação do fator de potência e a distorção harmônica no ponto de acoplamento da GD fotovoltaica.

Fator de potência

O sistema de geração distribuída (GD) deve ser capaz de operar dentro das seguintes faixas de fator de potência, quando a potência ativa injetada na rede for superior a 20% da potência nominal do gerador [11]:

• Sistemas de GD com potência nominal ≤ 3 kW: FP igual a 1 com tolerância na faixa de 0,98 indutivo a 0,98 capa-

- Sistemas de GD > 3 kW e < 6 kW: FP ajustável de 0,95 indutivo até 0,95 capacitivo;
- Sistemas de GD > 6 kW: FP ajustável de 0,92 indutivo até 0,92 capacitivo.

Harmônicas e distorcão da forma de onda

FotoVolt - Maio-Junho - 2018

A distorção harmônica total de corrente deve ser inferior a 5%, na potência nominal do sistema de geração distribuída. Cada harmônica individual deve estar limitada aos valores apresentados na Tabela II [11].

ıb. II — Limites de distorção harmônica de corrent						
Harmônicas ímpares	Limite de distorção					
3° a 9°	< 4,0 %					
11° a 15°	< 2,0 %					
17° a 21°	< 1,5 %					
23° a 33°	< 0,6 %					
Harmônicas pares	Limite de distorção					
2º a 8º	< 1,0 %					
10° a 32°	< 0.5 %					

Projeto do filtro LCL com amortecimento passivo

Os seguintes parâmetros são necessários para a configuração do filtro: V. (tensão de linha), P. (potência ativa de saída do inversor), ω (frequência

angular da rede), Vcc (tensão do barramento CC) e F... (frequência de chaveamento do inversor) [12]. A impedância de base (Z_i) e a capacitância de base (C_i) são definidas por (6) e (7). Assim, os valores de filtro serão referidos numa percentagem dos valores de base.

percentagem dos valores de base.
$$Z_b = \frac{V_L^2}{P_n} \qquad (6) \qquad C_b = \frac{1}{\omega_g \cdot Z_b} \qquad (7)$$

Para a parametrização da capacitância do filtro, considera-se que a variação máxima do fator de potência observada pela rede seja de 5%, indicando que a capacitância base do sistema é ajustada conforme indica (8). $C_c = 0.05 \cdot C_b$

Um fator de projeto maior que 5% pode ser usado, quando for necessário compensar a reatância indutiva do filtro, porém o fator de potência será comprometido. Se um valor muito baixo de capacitor for selecionado, um valor de indutância muito alto pode ser necessário (L.). Portanto, é aconselhável atribuir um valor em torno da metade do limite obtido na equação (8), no caso de alguma das restrições não ser respeitada, assim aumenta-se a capacitância até o valor limite [13]. A corrente máxima de saída do inversor monofásico é obtida por (9). $I_{max} = \frac{P_n \cdot \sqrt{2}}{2}$

A ondulação de corrente máxima na saída do inversor normalmente admi-

tida em projeto é de 10%, conforme (10): $\Delta I_{max} = 0.1 \cdot I_{max}$

Dessa forma, o valor do indutor do lado do inversor é expressado em (11):

O filtro LCL deve reduzir a ondulação da corrente a 20% [12, 13]. Os autores propõem um fator k de atenuação de corrente harmônica, sugerindo um valor de 20% em seus exemplos. Dessa forma, a indutância do lado da rede (L₂) é dada por (12):

$$L_2 = \frac{\sqrt{\frac{1}{k_a^2}} + 1}{C_{f^*} \omega_{sw}}$$
(12)

A frequência de ressonância (F,...) em (13) deve estar dentro dos limites estabelecidos em (14); caso contrário, deve trabalhar com outro valor de capacitância obtido em (8).

$$F_{res} = \sqrt{\frac{L_1 + L_2}{L_1 L_2 C_f}}$$
(13)

$$10 \cdot F_{rode} < F_{res} < 0.5 \cdot F_{sin}$$
 (14)

Um resistor em série (R,) com o capacitor atenua parte da ondulação na frequência de comutação para evitar a ressonância. O valor dessa resistência deve ser um terço da impedância do capacitor de filtro na frequência de ressonância [12]. Logo, a resistência em série com a capacitância do filtro (amortecimento passivo) é dada por (15):

♠ HTTP://ALUMAX.IND.BR/

➤ ALUMAX@ALUMAX.IND.BR

 $R_f = \frac{-}{3 \cdot (2 \cdot \pi \cdot f_{res}) \cdot C_f}$ A principal desvantagem de inserir o resistor em série com o capacitor do filtro são as perdas adicionais, porém essas perdas não são significativas, mesmo porque o resistor ajuda na redução da ondulação da corrente em

Parâmetros	Valor
VCC	500 V
VL	220 V
Psaída_inv.	2776,6 W
Zb	17,43 Ω
ωg	377 rad/s
СЬ	152,2 µF
Cf	7,6086 µF
Fsw	20 kHz
lmax	17,85 A
η_inversor	96%
ka	0,2

Tab. IV — Parametrização	do filtro LCL
Parâmetros	Valor
LI	2,3344 mH
Cf	7,6086 µF
L2	0,04994 mH
Rf	0,8449 Ω
Fres	8251,83 Hz

20% [13]. Assim, utilizando os valores da tabela III. obtêm-se os valores dos componentes do filtro LCL apresentados na tabela IV.

Vale ressaltar que foi considerada a resistência de L, e L, em 0,5 Ω.

O gerador fotovoltaico é composto por duas fileiras (strings)

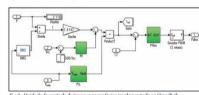
Tab. V — Dados do módulo e do gerador fotovoltaico								
Módulo* Gerador								
Vmp	36,1 V	216,6 V						
Voc	43,42 V	260,5 V						
Imp	7,18 A	14,36 A						
lsc	7,98 A	15,96 A						
Pmáx	260 W	3110 W						
Rs	0,4 Ω	1,3 Ω						
α	0,05 %/°C	0,1%/°C						
β	-0,35%/°C	-0,7 %/°C						
*Ameri	can Solar ASW-	260M						

em paralelo, com seis módulos em série cada, ou seja, 12 módulos no total. A tabela V traz os dados de um módulo American Solar ASW-260M e do

FotoVolt - Maio-Junho - 2018

Nessa tabela, Vmp é a tensão de máxima potência, Voc é a tensão de circuito aberto, Imp é a corrente de máxima potência, Isc é a corrente de curto-circuito, α é o coeficiente de temperatura para a corrente de curto-circuito, β é o coeficiente de temperatura para a tensão de circuito aberto, Rs é a resistência série da célula e Pmax é a potência máxima fornecida pelo módulo ou pelo gerador fotovoltaico.

Vale ressaltar que os parâmetros α e β informados pela datasheet do módulo estão na unidade de (%/°C), porém, na modelagem dos painéis solares, essa informação é preenchida em (A/°C e V/°C) para α e β, respectivamente. As conversões são dadas pelas equações (16) e (17):


$$\alpha[A/^{\circ}C] = \frac{\alpha[/^{\circ}C]}{100} \cdot I_{sc}$$
 (16)

$$\beta[V/^{\circ}C] = \frac{\beta[/^{\circ}C]}{100} \cdot V_{oc} \qquad (17)$$

Mais informação sobre a modelagem da célula solar utilizada constam da referência [4]. A figura 7 exibe o sistema fotovoltaico completo implementado no MATLAB/Simulink.

Fig. 7 - Sistema fotovoltaico implementado no Simulinl

Fia. 8 - Unidade de controle do inversor monofásico implementado no Simulink

Estudo de caso

FotoVolt - Maio-Junho - 2018

Analisa-se a seguir o comportamento do filtro LCL com e sem o amortecimento passivo, ora com os compensadores harmônicos, ora sem. A figura 8 apresenta o controle do inversor implementado no MATLAB/simulink, o qual é constituido pela malha de tensão juntamente com seu compensador PI, e a malha de corrente com o compensador P+Res.

Filtro LCL sem amortecimento passivo (R_t) e sem compensadores harmônicos

A figura 9 representa a tensão e corrente no ponto de acoplamento na rede (implementada com apenas uma fonte de tensão), além de exibir a tensão no barramento CC.

Percebe-se nessa figura que a tensão do barramento CC mantém o seu valor em torno dos 500 V; logo, a malha de controle da tensão está conforme e a malha de corrente também cumpre a

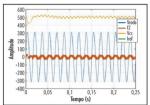
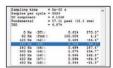



Fig. 9 - Tensão e corrente no ponto de acoplamento e tensão no elo CC

função de injetar corrente senoidal na rede e. com auxílio do PLL (phase locked loop), manteve-se em sincronismo com a tensão. Outro aspecto a observar é que a corrente I, acompanha a corrente de referência, confirmando, assim, a eficiência do controle.

A figura 10 mostra as componentes harmônicas que compõem a corrente sendo injetada na rede. Observa-se que, com 5.15%, a harmônica de terceira ordem viola o limite de distorção estipulado na tabela II, que é 3,99%.

Filtro LCL com amortecimento nassino (R.) e sem compensadores harmônicos

A figura 11 mostra tensão e corrente no ponto de acoplamento na

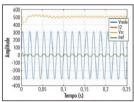


Fig. 11 - Tensão e corrente no ponto de acoplamento e tensão no elo CC

+26MWp de estruturas comercializadas

Desenvolvemos soluções em estruturas de suporte de painéis fotovoltaicos em solo:

- > Fixa
- ➤ Carport
- ➤ Seguidor solar de 1 eixo

Os produtos são customizados de acordo com as características do local e com as normativas NBR, de forma a otimizar custos globais da solução fotovoltaica.

(11) 4204-1302

vendas@politec.eng.br / www.politec.eng.br

A NOVEMP conta com Sistema de Gestão Integrado SGI certificado nas normas: ISO 9001 | ISO 14001 | OHSAS 18001

capacitor do filtro LCL.

rede com amortecimento passivo, ou seja, com uma resistência série com o

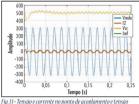
Verifica-se aqui um comportamento menos ruidoso da corrente de saída (l_2) em relação à figura 9 (tanto que sua curva quase não se distingue da de lref), o que permite concluir que o amortecimento passivo melhora a estabilidade da corrente. Além disso, o amortecimento colaborou na redução da distorção harmônica total de corrente (DHTi) de 6,67% (figura 10) para 3,08% (figura 12).

DC comp	per	cycle =		53 zma)
0	BE	(DC):	0.189	270.0*
60	HE	(Fnd):	100.00%	1.5
120	Sz	(h2):	0.10%	-62.0"
180	HE		2.87	-80.3
240	Hz	(h4):	0.049	6.6'
300	Hz		0.28%	231.4*
	HE		0.234	244.8*
	Hz		0.175	82.2"
480	Hz	(h8):	0.301	182.3*

Filtro LCL com amortecimento passivo (R_f) e com compensadores harmônicos

A figura 13 apresenta tensão e corrente no ponto de acoplamento na rede com o amortecimento passivo e os compensadores harmônicos de 3ª, 5ª e 7ª ordens.

Apesar de a corrente de saída (I_2) ter apresentado uma pequena taxa de ruído, os compensadores harmônicos não interferiram na dinâmica do controle, o qual continua a acompanhar a corrente de referência (I_{rol}) . A figura 14 mostra o conteúdo harmônico com a inserção dos compensadores.


Verifica-se na figura 14 que os compensadores harmónicos atuaram eficientemente, pois houve redução de correntes harmônicas de ordens 3º,5º e 7º. A tabela VI apresenta a parametrização do P+Res e dos respectivos compensadores.

Sampling Samples DC compo Fundame: THD	per	cycle	= 5e-06 s = 3333 = 0.03937 = 17.59 peak = 2.814	(12.44	rna)
	Hz	(00):	0.2		270.0*
		(Ind):	100.0		1.5"
120		(h2):	0.1		88.0*
240			0.0		149.5*
300	Hz		0.0		31.0*
		(h6):	0.1		62.0*
		(h7):	0.0		172.9"
480	Hz	(h8):	0.0	54	137.8*

Fig. 14 - Conteúdo harmônico da corrente de saida

Conclusão

O sistema de controle baseado em controlador P+Res com amortecimento passivo e compensadores harmônicos apresenta vantagens sobre as estratégias tradicionais de controle (Filtros L com compensadores PI), dado que desacopla a dinâmica do sistema das tensões da rede e permite a geração de correntes de saída com baixa distorção harmônica.

ig.13 - Tensão e corrente no ponto de acoplamento e tensão

O ganho do controlador P+Res torna-se infinito numa banda estreita centrada na frequência de ressonância, e é quase nulo fora da banda. Isso faz com que o controlador rastreie uma referência senoidal de alta frequência sem ter que aumentar a frequência de comutação. Uma característica interessante do compensador harmónico é que não afeta a dinâmica do controlador P+Res. Assim, a técnica P+Res pode ser usada com sucesso no controle de corrente para aplicações de conversores de rede.

Referências

[1] Souza, A.C.; Silva, L. R. C.; Oliveira, T. L.; Macedo Jr, J. R.; Santos, I.N. Análise da microgenção fotovoltaica monofísica na rede de distribuição de baixa tensão. XIV CEEL- UFU, Uberlândia, G, outubro de 2016.

[2] Paukner, Fillipe Lucchin: Comparação do controle do inversor trifásico conectado à rede com

Tab. VI - Parametrização dos controladores									
Parâmetros P+Res C3 C5									
Кр	0,1	-	-	-					
Ki	50	25	30	15					
ωα	10	20 7,5 2							
ω	377	1130,97	1884,95	2638,94					

filtro LCL considerando o amortecimento passivo e ativo. Dissertação de Mestrado, UTFPR, Pato Branco, PR, 2016.

- [3] Barbi, L.; Moia, V; Pini, S.H: Análise e controle do retificador trifásico boost PWM em base 0αβ. UFSC, INEP - Instituto de Eletrônica de Potência. Florianópolis. SC. agosto de 2010.
- [4] Souza, A. C.; Melo, F. C.; Oliveira, T. L.; Tavares, C. E.: Performance analysis of the computational implementation of a simplified PV model and MPPT algorithm. IEEE Latin America Transactions, Vol. 14, n° 2, pp. 792-798, 2016.
- [5] Souza, A.C.: Análise dos impactos da geração distribuída por fonte solar fotovoltaica na qualidade da energia elétrica. Dissertação de Mestrado, UFU, Uberlândia, MG, 2016.
- [6] Zmood, D.N.; Holmes, D.G.: Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, vol. 18, no 3, pp. 814-822, maio, 2003.
- [7] Teodorescu, R.; Blaabjerg, F.: A new control structure for grid-connected LCL PV Inverters with zero study-state error and selective harmonic compensation. Applied Power Electronics Conference and Exposition. [S.I.: s.n.], 2004. v. J. p. 580-586.
- [8] Teodorescu, R.; Blaabjerg, F.: Proportionalresonant controllers. A new breed of controllers suitable for grid-connected voltage-source converters. The 9th International Conference on Optimization of Electrical and Electronic Equipments. Brasov: [S.n.]. 2004. p. 9-14.
- [9] Machado, S. J. M.: Uma proposta de controle com alta capacidade de rejeição harmônica para interesors monofísicos concendaos à rede elétrica através de filtro LCL amortecido para sistemas de energia renovivel. Dissertação de Mestrado, UEL, Londrina, PR, 2016.
- [10] Resolução Normativa nº 687, de 24 de novembro de 2015. Agência Nacional De Energia Elétrica.
- [11] Manual de Distribuição Requisitos para a Conexão de Acessantes ao Sistema de Distribuição Cemio D – Conexão em Baixa Tensão.
- [12] Reznick, A.; Simões, M. G.; Al-Dutra, A.; Muyeen, S. M.: LCL filter design and performance analysis for grid-interconnected systems. IEEE transactions on Industry Applications, Vol. 50, nº 2, março/abril, 2014.
- [13] Liserre, M.; Blaabjerg, F.; Hansen, S.: Design and control of an LCLfilter-based three-phase active rectifier. IEEE Trans. Ind. Appl., vol. 41, no 5, pp. 1281–1291, set./out., 2005.

Guia dos fornecedores de medidores bidirecionais de energia

Da Redação de FotoVolt

Equipamentos dos quais se exigem alta precisão e capacidade, os medidores bidirecionais são componentes de grande relevância para o desenvolvimento da pequena geração fotovoltaica conectada no País, viabilizando o sistema de compensação de energia.

M edidores bidirecionais são exigidos pela Aneel para a conexão à rede da pequena geração distribuída das instalações consumidoras. Eles viabilizam a implantação do sistema de net metering, instituído pelo órgão regulador por meio da Resolução Normativa 482/2012. Nos Procedimentos de Distribuição (Prodist) a medição das instalações com mini e microgeração conectada é contemplada

no módulo 3 ("Acesso aos Sistema do Distribuição"), especificamente no item 7 da secão 3.7.

Com sugere o nome, medidores bidirecionais possibilitam o cómputo da energia gerada e consumida em um mesmo equipamento. Determinam se a instalação consumiu mais do que gerou, devendo, portanto, ser faturada, ou gerou além de seu consumo, fazendo jus a créditos junto à distribuidora.

Este levantamento de FotoVolt descreve a oferta de três renomados fabricantes de medidores. Os equipamentos são descritos segundo suas características principais; todos têm certificação Inmetro, exigência da regulamentação; a maioria realiza medição em quatro quadrantes e mede energia ativa e reativa; e boa parte possibilita o controle online do consumo e/ou oferece recurso para corte e religamento remotos.

Empresa / Telefone	Fabricante	Importador exclusivo	Fabricante / País	Tensão nominal (V)	Corrente nominal (A)	Corrente máxima (A)	Frequência (Hz)	Número de elementos	Número de fios	Número de fases	Dimensões (mm): (A × L × P)	Massa (kg)	Certificação Inmetro	Medição em 4 quadrantes	Medição de energia ativa/reativa	Controle online do consumo	Corte/religação remotos
				120 ou 240	15		60	1	2	1	161×128×38	0,3	•		•		
				240	15		60	1	3	1	161×128×47	0,46	•		•		
				120 e 240	15		60	2/3	3/4	2 ou 3	180×142×80	0,82	•	•	•		
Landis+Gyr (41) 3341-1519	•			120 e 240	15		60	1/1	2/3	1	188×140×116	1	•	•	•	•	•
(41) 3341-1317				120 e 240	15		60	2/3	3/4	2 ou 3	211×166×117	1,5	•	•	•	•	•
				120 e 240	2,5		60	3	3 ou 4	4	239 × 176 × 85	1,6	•	•	•		
				120 e 240	2,5		60	3	3 ou 4	4	239×176×132	1,7	•	•	•	•	
				120 ou 240	15	100	50 ou 60	1	2	1	13×98×51	0,4	•	•			
Nansen (31) 3514-3100	•			120 ou 240	15	120	50 ou 60	2 ou 3	3 ou 4	2 ou 3	235×168×73	1,5	•	•	•		
(31) 3314-3100				120 ou 240	2,5	20	50 ou 60	1, 2 ou 3	2, 3 ou 4	1, 2 ou 3	241 × 176 × 105,8	1,3	•	•	•	•	
				120, 240, 120/240	15	100	60	1	2	1	195,1×138,8×99,3	1,3	•	•	•	•	•
WEG (47) 3276-4000	•			120, 240, 120/240	15	120	60	2 e 3	3 e 4	2 e 3	284,9×138,8×99,3	2,3 e 2,45	•	•	•	•	•
(17) 3270 1000				120, 240, 120/240	2,5	10	60	2 e 3	3 e 4	2 e 3	284,9×138,8×99,3	1,8 e 1,9	•	•	•	•	8

Obs.: Os dados constantes deste quia foram formecidos pelas próprios empresas que dele participam, de um total de 13 empresas pesquisados. Fonte: Revista FotoValt, maio e junho de 2018. Este e outros 13 Guias FV estão disponíveis ar-líne, para consulta. Acesse www.arandanet.com.br/revista/fotovolt e confina. Também é possívei incluir a sua empresa na versão ar-líne de todos estes guias.